Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

نویسندگان

  • Leah Wasser
  • Rick Day
  • Laura Chasmer
  • Alan Taylor
چکیده

Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Evaluation of Lidar-derived Elevation and Terrain Slope in Leaf-off Conditions

The effects of land cover and surface slope on lidar-derived elevation data were examined for a watershed in the piedmont of North Carolina. Lidar data were collected over the study area in a winter (leaf-off) overflight. Survey-grade elevation points (1,225) for six different land cover classes were used as reference points. Root mean squared error (RMSE) for land cover classes ranged from 14....

متن کامل

Going Undercover: Mapping Woodland Understorey from Leaf-on and Leaf-off Lidar Data

An understorey model is created for an area of broadleaf, deciduous woodland in eastern England using airborne LiDAR data from winter 2003 (leaf-off conditions) and summer 2005 (leaf-on). The woodland is ancient, semi-natural broadleaf and has a heterogeneous structure, with a mostly closed canopy overstorey and a patchy understorey layer beneath. In places, particularly in the centre of the st...

متن کامل

Assessment of Errors Caused by Forest Vegetation Structure in Airborne LiDAR-Derived DTMs

Airborne Light Detection and Ranging (LiDAR) is a survey tool with many applications in forestry and forest research. It can capture the 3D structure of vegetation and topography quickly and accurately over thousands of hectares of forest. However, very few studies have assessed how accurately LiDAR can measure surface topography under forest canopies, which may be important, for example, in re...

متن کامل

Using airborne lidar to predict Leaf Area Index in cottonwood trees and refine riparian water-use estimates

Estimation of riparian forest structural attributes, such as the Leaf Area Index (LAI), is an important step in identifying the amount of water use in riparian forest areas. In this study, small-footprint lidar data were used to estimate biophysical properties of young, mature, and old cottonwood trees in the Upper San Pedro River Basin, Arizona, USA. Canopy height and maximum and mean laser he...

متن کامل

Mapping Riparian Zones over Large Regions from High Spatial Resolution Satellite and Airborne Imagery: Specifications for Operational Mapping

Riparian zones maintain water quality, support multiple geomorphic processes, contain significant biodiversity and also maintain the aesthetics of the landscape. Australian state and national government agencies responsible for managing riparian zones are planning missions for acquiring remotely sensed data covering the main streams in Victoria, New South Wales, and parts of Queensland and Sout...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013